想要深入往往是要从概念开始的。
定义
在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数(f(n))。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。
例如,如果一个算法对于任何大小为 n (必须比 n0大)的输入,它至多需要 5n3+ 3n 的时间运行完毕,那么它的渐近时间复杂度是 O(n3)。
描述
时间复杂度是指程序运行从开始到结束所需要的时间。
一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
只是时间复杂度,只有在程序真正执行或者测试的时候才能看到,所以通常的做法就是,从算法中选取一个基础操作或者称为原操作,以基础操作的重复执行次数作为算法的时间度量。
算法的执行次数还要随输入集有关,此时要考虑所有可能输入数据的期望值,此时的算法时间复杂度叫平均时间复杂度。
算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(n)。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
大多数情况下,基础操作是最深层循环内的语句中的操作。
按数量级递增排列,常见的时间复杂度有:
常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶O(n2), 立方阶O(n3),…, k次方阶O(nk), 指数阶O(2n) 。
例
常数阶
1 | let a=0, n =100; |
算法的时间复杂度为O(1)。这个算法的运行次数函数是f(n) = 1+1+1 = 3, 把常数项改为1,所以时间复杂度是O(1)。
线性阶
1 | for(let i = 0 ; i< n ; i++){ |
算法的时间复杂度是O(n)。这个的算法的运行次数函数f(n) = n+n = 2n , 把常数改为1, 所以时间复杂度是O(n)。
平方阶
1 |
|
在上面这个双重for循环中,基础操作++x
执行了1+2+3+ ... +n-1
次,即n*(n-1)/2 = (n2-2n)/2,所以时间复杂度是 O(n2);
对数阶
1 | let n = 100; |
算法的时间复杂度是O(log2n)。当每次i
乘以2之后,i
的值渐进于n,也就是说,有多少个2相乘之后会大于n,就会退出循环。 2x = n, x就是运行的次数, x = log2n 。
更多的时间复杂度列表参见 维基百科-时间复杂度[2]。
参考
[1]百度百科-时间复杂度
[2]维基百科-时间复杂度
[3]http://blog.csdn.net/firefly_2002/article/details/8008987